Очки        04.02.2024   

Тест по физике на тему "прямолинейное равномерное и равноускоренное движение". Прямолинейное равномерное движение Тс 1 прямолинейное равномерное движение вариант 2

Существуют различные виды механического движения. В зависимости от формы траектории движение может быть прямолинейным или криволинейным. При движении скорость тела может оставаться постоянной или с течение времени изменяться. В зависимости от характера изменения скорости движение будет равномерным или неравномерным.

Прямолинейное движение – это движение, при котором траектория тела (точки) – прямая линия. Например, движение автомобиля по участку дороги, на котором нет подъемов, спусков, поворотов.

Равномерным прямолинейным движением называют движение, при котором тело за любые равные промежутки времени проходит одинаковые пути и направление движения не меняетс я.

Если сравнить равномерное движение нескольких тел, то можно отметить, что быстрота изменения их положения в пространстве может быть различной, что характеризуется физической величиной, которая называется скоростью.

Скоростью равномерного прямолинейного движения называют векторную физическую величину, равную отношению перемещения тела ко времени, за которое это перемещение произошло.

(1)

Единица скорости в СИ – метр в секунду (1м/ c ). За единицу скорости принимают скорость такого равномерного движения, при котором тело за 1 с совершает перемещение 1м .

При прямолинейном равномерном движении скорость не изменяется с течением времени.

Зная скорость равномерного движения, можно найти перемещение тела за любой промежуток времени:

(2)

При равномерном прямолинейном движении векторы скорости и перемещения направлены в одну сторону.

Основной задачей механики является определение положение тела в любой момент времени, то есть определение его координат. Уравнение движения – это зависимость координаты тела от времени при равномерном прямолинейном движении.

Тело совершило перемещение . Направим координатную осьX по направлению перемещения тела. x 0 – начальная координата тела, x – конечная координата тела.

Таким образом, координату тела при равномерном прямолинейном движении в любой момент времени можно определить, если известны его начальная координата и проекция скорости движения на ось Х . Проекции скорости и перемещения могут быть как положительными, так и отрицательными.

График зависимости модуля вектора скорости от времени при равномерном движении – это прямая, параллельная оси абсцисс. Действительно, с течением времени скорость при таком движении остается постоянной.

График зависимости скорости тела от времени при равномерном движении V=const

При прямолинейном равномерном движении модуль вектора перемещения численно равен площади под графиком перемещения к оси времени.

График зависимости перемещения тела, от времени при прямолинейном равномерном движении – это прямая, проходящая через начало координат. Причем чем круче проходит график перемещения, тем больше скорость движения тела.

График зависимости пути, пройденного телом, от времени

При прямолинейном равномерном движении модуль вектора скорости численно равен тангенсу угла наклона графика перемещения к оси времени.

Поскольку зависимость координаты тела от времени – линейная функция, то соответствующий график зависимости (график движения) представляет собой прямую линию. Пример построения такого графика показан на рисунке.

График зависимости координаты тела от времени

Равномерное движение – это движение с постоянной скоростью, то есть когда скорость не изменяется (v = const) и ускорения или замедления не происходит (а = 0).

Прямолинейное движение – это движение по прямой линии, то есть траектория прямолинейного движения – это прямая линия.

Равномерное прямолинейное движение – это движение, при котором тело за любые равные промежутки времени совершает одинаковые перемещения. Например, если мы разобьём какой-то временной интервал на отрезки по одной секунде, то при равномерном движении тело будет перемещаться на одинаковое расстояние за каждый из этих отрезков времени.

Скорость равномерного прямолинейного движения не зависит от времени и в каждой точке траектории направлена также, как и перемещение тела. То есть вектор перемещения совпадает по направлению с вектором скорости. При этом средняя скорость за любой промежуток времени равна мгновенной скорости:

V cp = v

Пройденный путь при прямолинейном движении равен модулю перемещения. Если положительное направление оси ОХ совпадает с направлением движения, то проекция скорости на ось ОХ равна величине скорости и положительна:

V x = v, то есть v > 0

Проекция перемещения на ось ОХ равна:

S = vt = x – x 0

где x 0 – начальная координата тела, х – конечная координата тела (или координата тела в любой момент времени)

Уравнение движения , то есть зависимость координаты тела от времени х = х(t), принимает вид:

Х = x 0 + vt

Если положительное направление оси ОХ противоположно направлению движения тела, то проекция скорости тела на ось ОХ отрицательна, скорость меньше нуля (v < 0), и тогда уравнение движения принимает вид:

Х = x 0 - vt

Зависимость скорости, координат и пути от времени

Зависимость проекции скорости тела от времени показана на рис. 1.11. Так как скорость постоянна (v = const), то графиком скорости является прямая линия, параллельная оси времени Ot.

Рис. 1.11. Зависимость проекции скорости тела от времени при равномерном прямолинейном движении.

Проекция перемещения на координатную ось численно равна площади прямоугольника ОАВС (рис. 1.12), так как величина вектора перемещения равна произведению вектора скорости на время, за которое было совершено перемещение.

Рис. 1.12. Зависимость проекции перемещения тела от времени при равномерном прямолинейном движении.

График зависимости перемещения от времени показан на рис. 1.13. Из графика видно, что проекция скорости равна

V = s 1 / t 1 = tg α

где α – угол наклона графика к оси времени.Чем больше угол α, тем быстрее движется тело, то есть тем больше его скорость (больший путь тело проходит за меньшее время). Тангенс угла наклона касательной к графику зависимости координаты от времени равен скорости:

Tg α = v

Рис. 1.13. Зависимость проекции перемещения тела от времени при равномерном прямолинейном движении.

Зависимость координаты от времени показана на рис. 1.14. Из рисунка видно, что

Tg α 1 > tg α 2

следовательно, скорость тела 1 выше скорости тела 2 (v 1 > v 2).

Tg α 3 = v 3 < 0

Если тело покоится, то графиком координаты является прямая, параллельная оси времени, то есть

Х = х 0

Рис. 1.14. Зависимость координаты тела от времени при равномерном прямолинейном движении.

ТС -1 Прямолинейное равномерное движение.

I вариант .

1. Велосипедист, двигаясь равномерно, проезжает 20 м за 2 с. Определите, какой путь он проедет при движении с той же скоростью за 10 с.

А. 60 м. Б. 100 м. В. 150 м.

2
. На рисунке приведен график зависимости пути при движении велосипедиста от времени. Определите по этому графику путь, который проехал велосипедист в промежуток времени от 1 до 4 с.

3. По графику определите скорость движения велосипедиста в момент времени t =2 с.

4
. На рисунке представлены графики движения трех тел. Какое из этих тел движется с наибольшей по модулю скоростью в момент времени t =5 с?

5. По графику определите скорость движения первого тела в момент времени t =5 с.

А. 2 с, 5 м.

Б. 4 с, 10 м.

В. 5 с,15 м.

7. Запишите уравнение движения
второго тела по графику.

А.
.

Б.
.

В.
.


9. Катер плывет против течения реки. Какова скорость катера относительно берега, если скорость катера относительно воды 4 м/с, а скорость течения реки 3 м/с?

А. 7 м/с. Б. 5 м/с. В. 1 м/с.

10. Поезд прошел первые 40 км со скоростью 80 км/ч, а следующие 50 км – со скоростью 100 км/ч. Определите среднюю скорость поезда на всем пути.

А. 95 км/ч. Б. 85 км/ч. В. 90 км/ч.

ТС-1. Прямолинейное равномерное движение.

I
I
вариант.

    Автомобиль, двигаясь равномерно, проехал 50 м за 2с. Какой путь он проедет за 20 с, двигаясь с той же скоростью?

А
. 500 м. Б. 1000 м. В. 250 м.

2. Определите по графику зависимости пути от времени путь, пройденный телом за промежуток времени от 3 до 5 с.

    По графику определите скорость движения тела в момент времени t =4 с.

4
. На рисунке представлены графики движения трех тел. Какое из этих тел движется с наименьшей скоростью в момент времени t =2 с.

5. По графику движения определите скорость движения второго тела в момент времени 6 с.

6. По графику движения определите время и место встречи первого и второго тел.

А. 2 с, 10 м.

Б. 1 с, 5 м.

7. Запишите уравнение движения первого тела по графику.

А.
.

Б.
.

В.
.

8. Движение тела описывается уравнением
. На каком из графиков представлена зависимость координаты этого тела от времени?

9. Эскалатор метро движется вниз со скоростью 0,7 м/с. Какова скорость пассажира относительно земли, если он идет вверх со скоростью 0,7 м/с относительно эскалатора?

А.0 м/с. Б. 1,4 м/с. В. 1 м/с.

10. Автомобиль проехал первые 20 км со скоростью 50 км/ч, а следующие 60 км – со скоростью 100 км/ч. Определите среднюю скорость автомобиля на всем пути.

А. 90 км/ч. Б. 80 км/ч. В. 70 км/ч.

Данное пособие включает тренировочные задания. тесты для самоконтроля, самостоятельные работы, контрольные работы и примеры решения типовых задач. Предлагаемые дидактические материалы составлены в полном соответствии со структурой и методологией учебника А. В. Перышкина, К. М. Гутник «Физика. 9 класс».

ТЗ-1. Путь и перемещение .
1. Укажите, в каком из приведенных ниже примеров тело можно считать материальной точкой:
а) Земля, движущаяся вокруг Солнца;
б) Земля, вращающаяся вокруг своей оси;
в) Луна, вращающаяся вокруг Земли;
г) Луна, на поверхности которой движется луноход;
д) молот, брошенный спортсменом;
е) спортивный молот, который изготавливают на станке.
2. Что определяет пассажир автобуса по цифрам на километровых столбах, установленных вдоль шоссе, - перемещение или пройденный автобусом путь?
3. На рисунке 1 изображены траектории полета снарядов. Равны ли для этих движений пройденные снарядами пути? перемещения?
4. Тело, брошенное вертикально вверх из точки Л, упало в шахту (рис. 2). Чему равны пройденный телом путь и модуль перемещения, если АВ = 15 м, ВС - 18 м?
5. Спортсмену предстоит пробежать один круг (400 м). Чему равен модуль перемещения, если он: а) пробежал 200 м пути; б) финишировал? Дорожку стадиона считать окружностью.
6. Белка бежит внутри колеса, находясь на одной и той же высоте относительно пола. Равны ли путь и перемещение при таком движении?

Предисловие.
ТРЕНИРОВОЧНЫЕ ЗАДАНИЯ
ТЗ-1. Путь и перемещение.
ТЗ-2. Прямолинейное равномерное движение.
ТЗ-3. Относительность движения.
ТЗ-4. Прямолинейное равноускоренное движение.
ТЗ-5. Законы Ньютона.
ТЗ-6. Свободное падение тел.
ТЗ-7. Закон всемирного тяготения. Движение тела
ТЗ-8.Импульс тела. Закон сохранения импульса.
Закон сохранения энергии.
ТЗ-9. Механические колебания и волны. Звук.
ТЗ-10. Электромагнитное поле.
ТЗ-11. Строение атома и атомного ядра.
ТЕСТЫ ДЛЯ САМОКОНТРОЛЯ
ТС-1. Прямолинейное равномерное движение.
ТС-2. Прямолинейное равноускоренное движение.
ТС-3. Законы Ньютона.
ТС-4. Свободное падение тел.
ТС-5. Закон всемирного тяготения. Движение тела
по окружности. Искусственные спутники Земли..
ТС-6. Импульс тела. Закон сохранения импульса.
Закон сохранения энергии.
ТС-7. Механические колебания.
ТС-8. Механические волны. Звук.
ТС-9. Электромагнитное поле.
ТС-10. Строение атома и атомного ядра.
САМОСТОЯТЕЛЬНЫЕ РАБОТЫ
СР-1. Путь и перемещение.
СР-2. Прямолинейное равномерное движение.
СР-3. Прямолинейное равномерное движение.
Графические задачи.
СР-4. Относительность движения.
СР-5. Прямолинейное равноускоренное движение..
СР-6. Прямолинейное равноускоренное движение.
Графические задачи.
СР-7. Законы Ньютона.
СР-8. Свободное падение тел.
СР-9. Закон всемирного тяготения.
Искусственные спутники Земли.
СР-10. Движение тела по окружности.
СР-11. Импульс тела. Закон сохранения импульса.
Закон сохранения энергии.
СР-12. Механические колебания.
СР-13. Механические волны. Звук.
СР-14. Электромагнитное поле.
СР-15. Строение атома и атомного ядра.
КОНТРОЛЬНЫЕ РАБОТЫ
КР-1. Прямолинейное равноускоренное движение.
КР-2. Законы Ньютона.
КР-3. Закон всемирного тяготения. Движение тела
по окружности. Искусственные спутники Земли.
КР-4. Закон сохранения импульса.
Закон сохранения энергии.
КР-5. Механические колебания и волны.
КР-6. Электромагнитное поле.
ПРИМЕРЫ РЕШЕНИЯ ТИПОВЫХ ЗАДАЧ
Законы взаимодействия и движения тел.
Механические колебания и волны.
Электромагнитное поле.
ОТВЕТЫ
Тренировочные задания.
Тесты для самоконтроля.
Самостоятельные работы.
Контрольные работы.
Список литературы.

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Физика, 9 класс, учебно-методическое пособие, Марон А.Е., Марон Е.А., 2014 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать pdf
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.